Tight Lower Bounds on the Complexity of Derivative Accumulation

Andrew Lyons

Computation Institute, University of Chicago, and

Mathematics and Computer Science Division, Argonne National Laboratory

lyonsam@gmail.com

Theory Seminar

Department of Computer Science, University of Chicago

March 9, 2010

Who Am I?

- ▶ B.S. Computer Science, Mathematics (Vanderbilt Univ. 2006)
- Background in graph/order theory, algorithms
- ▶ 2007-present: ANL

Who Am I?

- ▶ B.S. Computer Science, Mathematics (Vanderbilt Univ. 2006)
- Background in graph/order theory, algorithms
- 2007-present: ANL

Specialized compiler OpenAD (http://www.mcs.anl.gov/OpenAD/) implementing techniques of *automatic* (or *algorithmic*) *differentiation*

Primary application: MITgcm (General Circulation Model) (http://mitgcm.org/)

Motivation: Derivatives are Ubiquitous in Computational Science and Engineering

Examples:

- Derivative-based optimization
- Numerical simulation (sensitivities)

Have code for F,

Want code to compute the value for F and its derivatives F' (at some argument)

A Very High-Level Overview of Computational Derivatives

Divided Differences

- ▶ Treat F as a black box
- involves step-size parameter h (inexact, needs tuning)

Symbolic Differentiation (Mathematica, etc.)

- ▶ Ignore code for F, treat as a collection of expressions (formulas)
- ightharpoonup \Rightarrow produce formula for F' from formula for F

A Very High-Level Overview of Computational Derivatives

Divided Differences

- ► Treat F as a black box
- ▶ involves step-size parameter h (inexact, needs tuning)

Symbolic Differentiation (Mathematica, etc.)

- \blacktriangleright Ignore code for F, treat as a collection of expressions (formulas)
- ightharpoonup \Rightarrow produce *formula* for F' from *formula* for F

Automatic (Algorithmic) Differentiation

- ightharpoonup code for F and F' $\stackrel{\text{traditional compiler}}{\longrightarrow}$ machine code
- ► Considers the code for F as a *circuit*, appends to this a circuit for F'
- ▶ Yields exact derivatives

The OPTIMAL STRUCTURAL DERIVATIVE ACCUMULATION Problem

straight-line code \rightarrow G Given any DAG G, find optimal way to evaluate

$$\mathcal{J}_{ij}(G) = \sum_{P \in [s_i \leadsto t_i]} \prod_{(u,v) \in P} x_{uv},$$

The OPTIMAL STRUCTURAL DERIVATIVE ACCUMULATION Problem

exponential number of terms - easy to evaluate by dynamic programming

Straight-line code (no branches) – is this a toy problem?

The OPTIMAL STRUCTURAL DERIVATIVE ACCUMULATION Problem

$$\mathcal{J}(G) = \begin{bmatrix} x_{11}^1 & x_{12}^1 \\ x_{21}^1 & x_{22}^1 \end{bmatrix} \begin{bmatrix} x_{11}^2 & x_{12}^2 \\ x_{21}^2 & x_{22}^2 \end{bmatrix}$$

What can we hope to say about the complexity of $\mathcal{J}(G)$? it includes matrix multiplication as a special case

Tight Lower Bounds for Computations over Semirings

We restrict our computation to the real semiring (\Rightarrow monotone circuits)

Theorem (Jerrum/Snir 1982)

 $(k-1)n^3$ multiplications are necessary and sufficient to evaluate the product $A^1A^2\cdots A^k$ of k dense $n\times n$ matrices over $(\mathbb{R},\times,+,0,1)$.

Tight Lower Bounds for Computations over Semirings

We restrict our computation to the real semiring (\Rightarrow monotone circuits)

Theorem (Jerrum/Snir 1982)

 $(k-1)n^3$ multiplications are necessary and sufficient to evaluate the product $A^1A^2\cdots A^k$ of k dense $n\times n$ matrices over $(\mathbb{R},\times,+,0,1)$.

For k = 2, the above is implied by the following stronger result.

Theorem ((many – Pratt, Paterson, Kerr, Melhorn) 1970's)

If A is an $n_0 \times n_1$ matrix and B is an $n_1 \times n_2$ matrix, then $n_0 n_1 n_2$ multiplications and $n_0 (n_1 - 1) n_2$ additions are necessary and sufficient to evaluate AB over any semiring of characteristic zero.

Why Compute Over a Semiring?

Some combination of the following:

- ▶ Numerical stability (no run-time checks)
- Seems natural
- ▶ Our purview is the *structure* of derivatives and the chain rule
- ▶ This structure should certainly have meaning in semirings

Outline

Outline

Computational Model

The real semiring $\langle \mathbb{R}, \times, +, 0, 1 \rangle$

- ▶ × and + are commutative, associative
- × distributes over +
- 1 multiplicative identity
- 0 additive identity/multiplicative annihilator
- ▶ No additive inverses no cancellations

Arithmetic Circuits Compute (Collections of) Polynomials

Inputs: indeterminates from X, positive constants from underlying field

Gates: Always indegree 2, of the following two types:

 \otimes gates : Compute the product of their children

⊕ gates : Compute the sum of their children

Arithmetic Circuits Compute (Collections of) Polynomials

Inputs: indeterminates from X, positive constants from underlying field

Gates: Always indegree 2, of the following two types:

 \otimes gates : Compute the product of their children

⊕ gates : Compute the sum of their children

Think of polynomials in terms of set of sets representation (monomials and indeterminates)

Arithmetic Circuits Compute (Collections of) Polynomials

Monotone Multilinear Circuits Have Nice Properties

Definition (multilinear polynomial over $\mathbb{R}[X]$)

linear in each indeterminate in X

Monotone circuits for multilinear polynomials are multilinear (Nisan/Wigderson 1995)

Monotone Multilinear Circuits Have Nice Properties

Definition (multiplicatively disjoint circuit)

No indeterminate x has both α and β as an ancestor

Definition (Jerrum/Snir1982)

A subcircuit T of Φ is a parse tree of Φ if it satisfies the following conditions:

- 1. T contains the (unique) output of Φ .
- 2. If T contains a sum gate σ , then T contains exactly one of the children of σ .
- 3. If T contains a product gate ρ , then T contains both of the children of ρ .
- 4. No proper subtree of T satisfies (i)-(iii).

Outline

Tight Lower Bounds

Theorem

An optimal arithmetic circuit computing $\mathcal{J}(G)$ can be constructed in polynomial time if G belongs to one of the following classes of DAGs.

- ▶ 3-homogeneous st-DAGs
- complete st-DAGs
- series-parallel st-DAGs

3-homogeneous st-DAGs

$$\mathcal{J}(G) = \underbrace{\left[\begin{array}{ccc} x_{11}^1 & x_{12}^1 & x_{13}^1 \end{array}\right]}_{X^1} \underbrace{\left[\begin{array}{ccc} x_{11}^2 & 0 & 0 \\ x_{21}^2 & x_{22}^2 & 0 \\ x_{31}^2 & x_{32}^2 & x_{33}^2 \end{array}\right]}_{X^2} \underbrace{\left[\begin{array}{ccc} x_{11}^3 \\ x_{21}^3 \\ x_{31}^3 \end{array}\right]}_{X^3}$$

3-homogeneous *st*-DAGs

If G is a 3-homogeneous st-DAG, then

$$\mathbf{C}_{\times}\left(\mathcal{J}(G)\right) = \left|X^{2}\right| + \tau\left(G^{2}\right)$$
.

3-homogeneous st-DAGs: The Upper Bound

Let H be a vertex cover of G^2 , and assume WLOG that $v_1^1 \in H$

3-homogeneous st-DAGs: The Upper Bound

Let H be a vertex cover of G^2 , and assume WLOG that $v_1^1 \in H$

Produce a (sub)circuit for all paths containing x_{11}^1

3-homogeneous st-DAGs: The Upper Bound

3-homogeneous *st*-DAGs: The Lower Bound

Note 1-1 correspondence between monomials of $\mathcal{J}(G)$ and elements of \mathcal{X}^2

Consider the gates where indeterminates come together

Λ: (the "lower") gates – two indeterminates

↑: (the "upper") gates – three indeterminates

3-homogeneous st-DAGs: The Lower Bound

$$|\Lambda| \ge |X^2|$$
$$|\Upsilon| \ge \tau \big(G^2\big)$$

Lower Bounds via Reduction Rules

We consider local transformations

$$G \rightarrow G'$$

where we can relate the complexity of G to that of G'

In some cases, a sequence

$$G \rightarrow G' \rightarrow \cdots \rightarrow G^{(k-1)} \rightarrow G^{(k)}$$

with k = O(|A(G)|) reduces the graph to a *single edge*.

Lower Bounds via Reduction Rules: Parallel Arcs

Lemma

$$\mathbf{C}(\mathcal{J}(G)) = \mathbf{C}(\mathcal{J}(G')) + 1$$

$$\mathbf{C}_{+}(\mathcal{J}(G)) = \mathbf{C}_{+}(\mathcal{J}(G')) + 1$$

$$\mathbf{C}_{\times}(\mathcal{J}(G)) = \mathbf{C}_{\times}(\mathcal{J}(G'))$$

Proof.

 (\leq) : set $x' = x_1 + x_2$

(\geq): set $x_1 = 0$ (removes at least one sum gate)

Lower Bounds via Reduction Rules: Key Lemma

Let (u, v) be an arc in A(G).

Lemma

If there is no alternative path from u to v in G, then every parent of $x_{uv} \in \Phi$ is a \otimes -gate

Proof.

Suppose a sum gate σ has children x_{uv} and β .

For every parse tree that includes x_{uv} there is a corresponding parse tree including β .

Lower Bounds via Reduction Rules: Arcs in Series

Lemma

If v has exactly one inedge and exactly one outedge, then

$$\mathbf{C}(\mathcal{J}(G)) = \mathbf{C}(\mathcal{J}(G')) + 1$$

$$\mathbf{C}_{+}(\mathcal{J}(G)) = \mathbf{C}_{+}(\mathcal{J}(G'))$$

$$\mathbf{C}_{\times}(\mathcal{J}(G)) = \mathbf{C}_{\times}(\mathcal{J}(G')) + 1$$

Lower Bounds via Reduction Rules: Arcs in Series

Lemma

If v has exactly one inedge and exactly one outedge, then

$$\begin{aligned} \mathbf{C}\left(\mathcal{J}(G)\right) &= \mathbf{C}\left(\mathcal{J}(G')\right) + 1\\ \mathbf{C}_{+}\left(\mathcal{J}(G)\right) &= \mathbf{C}_{+}\left(\mathcal{J}(G')\right)\\ \mathbf{C}_{\times}\left(\mathcal{J}(G)\right) &= \mathbf{C}_{\times}\left(\mathcal{J}(G')\right) + 1 \end{aligned}$$

Proof.

$$\leq$$
: set $x' = x_1 \times x_2$

 \geq : set $x_1 = 1$ (remove at least one \otimes -gate)

Lower Bounds via Reduction Rules: Series-Parallel st-DAGs

Definition

A single isolated edge is a series-parallel st-DAG.

If G_1 , G_2 are series-parallel st-DAGs, then so is their...

series composition: identify the sink of G_1 with the source of G_2

parallel composition: identify the two sources, identify the two sinks

Lower Bounds via Reduction Rules: Series-Parallel st-DAGs

Definition

A single isolated edge is a series-parallel st-DAG.

If G_1 , G_2 are series-parallel st-DAGs, then so is their...

series composition: identify the sink of G_1 with the source of G_2

parallel composition: identify the two sources, identify the two sinks

Theorem

The following are equivalent.

- ► G is a series-parallel st-DAG
- ► G can be reduced to a single edge by a sequence of series and parallel reduction rule applications
- lacktriangle there is a circuit for $\mathcal{J}(G)$ that is tree structured (like a formula)

Lower Bounds via Reduction Rules: Complete st-DAGs

Lemma

If v has exactly one inedge and there is no alternative path from v to w, then

$$\begin{split} & \boldsymbol{\mathsf{C}}\left(\mathcal{J}(G)\right) = \boldsymbol{\mathsf{C}}\left(\mathcal{J}(G')\right) + 2 \\ & \boldsymbol{\mathsf{C}}_{+}\left(\mathcal{J}(G)\right) = \boldsymbol{\mathsf{C}}_{+}\left(\mathcal{J}(G')\right) + 1 \\ & \boldsymbol{\mathsf{C}}_{\times}\left(\mathcal{J}(G)\right) = \boldsymbol{\mathsf{C}}_{\times}\left(\mathcal{J}(G')\right) + 1 \end{split}$$

Proof.

- (\leq) : set $x' = x_3 + (x_1 \times x_2)$
- (≥): set $x_2 = 0$ (removes at least one \otimes -gate and at least one
- ⊕-gate)

Lower Bounds via Reduction Rules: Complete st-DAGs

Lower Bounds via Reduction Rules: Comments

Optimality-preserving reduction rules should be applied whenever possible

We can turn any DAG into a homogeneous DAG by *subdividing arcs* (series reduction rule)

All of our reduction rules run in polynomial time.

future work: could these rules (or similar) imply a polynomial-size kernel?

Outline

Discussion of Results

What have we seen so far?

- homogeneous DAGs correspond to iterated sparse matrix multiplication
- ▶ finding an optimal circuit for a 3-homogeneous st-DAG ⇔ bipartite vertex cover
- Lower bounds via reduction rules for series-parallel and complete st-DAGs

Progress towards to original problem (OPTIMAL STRUCTURAL DERIVATIVE ACCUMULATION)?

Complexity of Circuit Minimization

The problem becomes NP-hard when some subset of the edges may be labeled with the multiplicative unit "1".

 \Rightarrow bilinear forms with $\{0,1\}$ constants NP-hard via biclique cover (Gonzalez and JáJá, 1980)

Computing Polynomial Functions over Different Semirings

Computing Polynomial Functions over Different Semirings

The Power of Constants

constant terms

$$(1+x_a)(x_b+x_c) = x_b + x_c + x_a x_b + x_a x_c$$

this does not apply for *homogeneous* polynomials, and it also doesn't apply for "path polynomials"

Lemma

The parent of every constant input is a product gate.

Proof.

(Same as for edges with no alternative path.)

The Power of Constants: Monotone Multilinear Circuits Without Constants are Even Nicer

scaling indeterminates by constants

$$x_1 + ax_2 + (1 - a)x_2 + x_3$$

why is it useful to have constant-free circuits?

The Power of Constants

$$\mathcal{R} = \langle \mathbb{R}, +, \times, 0, 1 \rangle \quad \mathcal{M} = \langle \mathbb{R} \cup \{+\infty\}, \text{min}, +, +\infty, 0 \rangle$$

Theorem (Jerrum/Snir 1982)

If p is a multilinear polynomial, then

$$\mathbf{C}^{\mathcal{M}}(p) = \mathbf{C}^{\mathcal{R}}(p)$$
 $\mathbf{C}^{\mathcal{M}}_{\times}(p) = \mathbf{C}^{\mathcal{R}}_{\times}(p)$
 $\mathbf{C}^{\mathcal{M}}_{+}(p) = \mathbf{C}^{\mathcal{R}}_{+}(p)$

Optimal Circuits are Constant-Free

Conjecture

Let p be monic, multilinear.

If p is homogenous or p is the path polynomial of some st-DAG, then every optimal arithmetic circuit computing p over $\langle \mathbb{R}, +, \times \rangle$ is constant-free.

Proof.

If a monotone idempotent circuit computes a monic multilinear polynomial, then we can remove the constants

The Power of Constants

$$\mathcal{R} = \langle \mathbb{R}, +, \times, 0, 1 \rangle, \quad \mathcal{M}^+ = \langle \mathbb{R}^+ \cup \{+\infty\}, \min, +, +\infty, 0 \rangle$$

Theorem (Jerrum/Snir 1982)

If p is a homogeneous multilinear polynomial, then

$$\mathbf{C}^{\mathcal{M}^+}(p) = \mathbf{C}^{\mathcal{R}}(p)$$
 $\mathbf{C}^{\mathcal{M}^+}_{\times}(p) = \mathbf{C}^{\mathcal{R}}_{\times}(p)$
 $\mathbf{C}^{\mathcal{M}^+}_{+}(p) = \mathbf{C}^{\mathcal{R}}_{+}(p)$

Note here we have absorption: min(a, a + b) = a

The Power of Commutativity

Conjecture (Griewank/Naumann)

Commutativity has no power for evaluating $\mathcal{J}(G)$

All our upper bounds use noncommutative circuits

Acknowledgements

- Jean Utke/Paul Hovland/Ilya Safro (ANL)
- Uwe Naumann (RWTH Aachen)
- Andreas Griewank (Humboldt Berlin)
- ► Sasha Razborov/Raghav Kulkarni (Chicago)
- Andrew Cone (Chicago alum)

Thanks!

Questions?